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Abstract
The oscillations of magnetocrystalline anisotropy (MA) energy with the
increasing thickness of a Pd overlayer in Co/Pd systems, obtained within a
realistic five-d-band tight-binding model, are analysed thoroughly in order to
determine uniquely the basic origin of the oscillations. Several techniques are
applied to achieve this goal, including real- and k-space breakdowns of the
MA energy. The MA oscillations are shown, in a direct way, to come from
pairs of majority-spin quantum-well states, confined in the Pd overlayer, and
the corresponding pairs of minority-spin resonances, both occurring near the
Fermi level at and in the neighbourhood of the � point of the two-dimensional
Brillouin zone. The oscillatory behaviour of layer-resolved MA contributions
in the Pd overlayer is also explained.

1. Introduction

The dependence of energy on the magnetization direction, known as magnetic anisotropy, is one
of important factors in thin magnetic films. One source of this effect is shape anisotropy due
to long-range dipole–dipole interaction. The other source is magnetocrystalline anisotropy
(MA). The essence of MA is that the energy of an electron moving in a film depends, via
spin–orbit (SO) coupling, on the direction of its spin magnetic moment with respect to the
geometric structure of the film. The MA energy EMA associated with the orientation of the
film magnetization is of the second order in the SO interaction Hso and, thus, is much larger than
in bulk cubic ferromagnets where EMA comes only as the fourth-order correction to the crystal
energy. The origin of this effect is the reduced symmetry of thin films, compared to bulk cubic
crystals, due to the existence of surfaces and/or interfaces. Therefore, one may be tempted to
assume, as is usually done in the interpretation of experimental data (see, e.g., [1–3]), that the
magnetic-anisotropy energy of a multilayer system with perfect cubic lattice consists of two
parts. The MA energy coming from surfaces and interfaces present in the system is the first part
which is assumed not to depend on the thicknesses of metallic films forming the multilayer.
1 Permanent address.
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The second part, originating in the interior of the films, is linear in the film thicknesses and is
attributed mainly to shape anisotropy only, though a small bulk MA contribution is also present.
However, theoretical findings prove that these assumptions are only partly true since the MA
energy can oscillate significantly, around an average value, with increasing film thickness.
This was reported for the thickness of a ferromagnetic film (free-standing or being a part of a
multilayer system) in [4–11], but no clear explanation of the MA oscillations was given there.

A recent report [12] presented calculations showing that the MA energy of (001) fcc
Pd(p)/Co(q)/Pd(p) slabs oscillates with the increasing number p of atomic layers (AL) in
the Pd overlayer. Also, in a paper published a month earlier, Szunyogh et al [13] reported
oscillatory behaviour of MA in (001) fcc Co/Cu multilayer systems versus both Co and Cu
layer thicknesses. In these two reports, for the first time, MA oscillations versus the thickness
of a non-magnetic overlayer were predicted theoretically. Earlier, similar MA oscillations were
found experimentally for a stepped (001) Co fcc surface covered with Cu overlayer of varying
thickness [14]. Also, MA oscillations versus Cu thickness were reported for Cu/Co/Au(111) fcc
trilayers [15]. Although, similar oscillations have not been found in experiments on Co/Pd thin
films [16,17] so far, I believe that the different behaviour of the Co/Pd and Co/Cu experimental
systems can be attributed to imperfections of Co/Pd interfaces measured, especially to alloying
at the interfaces and/or their roughness. This conviction is supported by the fact that a significant
effect of surface quality on quantum oscillations has been found experimentally for Co/Cu
stepped surfaces [18]. However, the interface imperfections are not included in the present
model, similar to all previous theoretical MA approaches.

In [12], the MA oscillations in the Co/Pd systems were assumed to be induced by pairs of
quantum-well (QW) states confined within the Pd overlayer, each pair being degenerate at the
� point of the two-dimensional, surface, Brillouin zone (2D-BZ). This assumption was, in fact,
partly based on the results to be presented only in the current paper. In [12], the majority-spin
QW states, forming the pairs, were derived from bulk Pd electronic states, obtained in a two-
band tight-binding (TB) model, whose three-dimensional wave-vectors were later quantized,
in a simple way, in the direction perpendicular to the slab surface. This approach reproduced
the MA oscillation period and related it to the extremal dimension of the bulk Pd Fermi surface.
A similar relation had previously been found for oscillation periods of the exchange coupling
in magnetic multilayers (see, e.g., [19, 20]).

The objective of the present paper is to analyse the MA oscillations versus the Pd thickness
in Co/Pd systems within the full five-d-band canonical TB slab model, in a thorough and
systematic way, in order to reveal the basic internal mechanism governing these oscillations.
As a result, the connection between the MA oscillations and the QW state pairs, assumed
in [12], is now deduced directly in the TB model. This goal is achieved by a variety of
techniques in which the MA energy is broken down in various ways. The argument starts with
real-space analysis of MA done either by switching off the SO interaction in the Co or Pd layers
or by looking at the layer-by-layer breakdown of MA. Then, we study how states with different
energies, close and far from the Fermi level, influence MA. Next, we determine the region in
the 2D-BZ where the MA oscillations come from. Further, we take an even closer look, down
to individual electronic states which contribute to MA. Thus, the effect of majority-spin QW
states and minority-spin resonances on MA is revealed. The simplified, semi-analytical, TB
model used in [12] for majority-spin QW states is given a formal justification. It is further
enhanced to describe the minority-spin resonances and explain why they appear in phase with
the majority-spin QW states. The semi-analytical TB model also leads to understanding of
real-space oscillations of the layer MA contributions in the Pd overlayer.

The TB approach used in the present paper to treat the MA problem is, to some extent, a
model calculation when compared with sophisticated ab initio methods. However, it should be
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stressed that, despite the somewhat poorer accuracy of TB models, the previous calculations
for Fe, Co, Ni surfaces and Co/Pd interfaces [6, 8] have proved that a carefully set TB model,
though not fully self-consistent, is able to reproduce correctly the sign of the MA energy and
its order of magnitude. Also, it was the TB model that first predicted the existence of MA
oscillations in magnetic layered systems [6]. Because the TB model is simple and easy to
solve numerically, even for thick films, one is able to analyse the MA problem thoroughly and
efficiently. In particular, the use of the present slab TB model has such an advantage over a
Green-function ab initio approach that the TB model allows one to monitor the effect on MA
of individual quantum states.

2. Theory

A detailed formulation of the theory of MA for slabs in finite temperature T has been given
in [8]. Below, we summarize briefly the main results which will be used in the present
calculations.

We consider slabs built from atomic layers of transition metals. Some atomic layers have
net spin magnetic moments M (l) (per atom). The moments M (l) are assumed to be collinear
and pointing in a direction characterized by the polar angle θ made with the slab surface normal
and by an azimuthal angle φ around the normal. For a (001) fcc slab, the z-axis is chosen to be
perpendicular to the surface while the x- and y-axes are along the axes of the square surface
lattice; φ is measured from the x-axis. The square lattice constant is a2d = a/

√
2 where a

denotes the fcc lattice constant.
The spins of electrons are coupled to their orbital moments on each atom, [6,8,21] the spin–

orbit coupling constant ξl being potentially different for each layer l. The spin–orbit interaction
Hso is treated as a perturbation and gives non-zero corrections to the thermodynamic potential
� in even orders only [8]. In the case of a slab, unlike for bulk cubic crystals, the second-
order correction �(2) depends on the pre-set (θ, φ)-direction of the slab magnetization. The
angle-dependent part of �(2)/N is identified as the MA energy EMA (per surface atom):

EMA(θ, φ) = K1 cos2 θ + K2 sin2 θ cos2 φ (1)

where N is the number of atoms in each atomic layer (equal to the number of k-points in the
two-dimensional BZ). The above form of the MA energy is valid for (001) and (110) fcc or bcc
slabs, as studied previously [6–8,12]. For (001) fcc slabs, K2 = 0 and the anisotropy constant
K1 is given by the following formula [8]

K1 =
[

1

8
Q1212 − 1

4
Q1234 +

√
3

4
Q1235 +

1

8
Q1313 +

1

4
Q1324 +

√
3

4
Q1325 − Q1414 − Q1423

−1

4
Q2323 +

1

8
Q2424 +

√
3

4
Q2425 +

3

8
Q2525 +

1

8
Q3434 −

√
3

4
Q3435 +

3

8
Q3535

]
(2)

where

Qµ1µ2µ3µ4 = I↑↑
µ1µ2µ3µ4

− I↑↓
µ1µ2µ3µ4

− I↓↑
µ1µ2µ3µ4

+ I↓↓
µ1µ2µ3µ4

(3)

I σ ′σ ′′
µ1µ2µ3µ4

= Re
[
J σ ′σ ′′
µ1µ2µ3µ4

− J σ ′σ ′′
µ2µ1µ3µ4

− J σ ′σ ′′
µ1µ2µ4µ3

+ J σ ′σ ′′
µ2µ1µ4µ3

]
(4)
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J σ ′σ ′′
µ1µ2µ3µ4

= 1

2N

∑
k

∑
n′ n′′

f (εn′′σ ′′(k)) − f (εn′σ ′(k))

εn′′σ ′′(k) − εn′σ ′(k)

×
∑
l′

ξl′a
σ ′′
n′′,l′µ2

(k)[aσ ′
n′,l′µ1

(k)]∗
∑
l′′

ξl′′a
σ ′
n′,l′′µ4

(k)[aσ ′′
n′′,l′′µ3

(k)]∗. (5)

Here, εnσ (k) are eigen-energies of an electron with spin σ and two-dimensional wave-vector
k parallel to the slab surface when the spin–orbit coupling is absent. These eigen-energies and
the corresponding eigenstates

|nkσ 〉 =
∑
lµ

aσ
n,lµ(k)|klµσ 〉 (6)

are found by diagonalizing the matrix Hσ
lµ,l′ν(k) = 〈klµσ |H |kl′νσ 〉 of the slab Hamiltonian

H in the in-plane basis |klµσ 〉. Each basis state |klµσ 〉 is a two-dimensional Bloch state, in
atomic layer l, formed from atomic orbitals µ on each site (cf. [6–8]). The Hamiltonian matrix
is calculated in the two-centre approximation [22] and is assumed to depend on the spin σ

only through the exchange term 1
2 s(σ )!

(l)
ex δµνδll′ where s(↑) = −1, s(↓) = 1 and !

(l)
ex is a

layer-dependent exchange splitting. In the present calculations we use five d-orbitals: xy, yz,
zx, x2 − y2, 3z2 − r2 which are numbered in equation (2) as 1, 2, 3, 4 and 5, respectively. The
canonical two-centre TB parameters are adopted for the d-orbitals in the Hamiltonian matrix
elements between first- and second-nearest-neighbours. [6, 8, 23, 24] On-site layer-dependent
potentials are determined self-consistently in order to obtain the correct magnetic moments
in Co layers and d-electron occupations in Pd layers. This also sets the position of the Fermi
energy εF within the d band. The Co magnetic moments and Pd d-electron occupations are
taken from ab initio calculations and thus are not calculated self-consistently. The present
TB model cannot be fully self-consistent due to the fact that only d-orbitals are taken into
account. It is possible to restrict the TB model to d states only because the Fermi level, whose
position is important for MA (cf. section 3.2), lies within the d-band both in Co and Pd. The
SO coupling constants ξl , present in equation (5), are chosen as ξCo = 0.085eV in Co layers
and ξPd = 0.23eV in Pd layers [8, 12]. Other details of the applied TB model can be found
in [8].

Expressions (2)–(5) for the MA constant K1 depend on temperature T only through the
Fermi–Dirac function f (ε) = {1 + exp [β(ε − εF)]}−1 where β = kBT , εF is the Fermi
energy, and kB is the Boltzmann constant. Thus, the present approach takes no account of
the temperature dependence of the magnetization. Consequently, the temperature dependence
of the average value of the MA energy is not correctly described. However, one real effect
of finite temperature is included. This is the reduction in amplitude of oscillations of the MA
energy about its mean value, as a function of film thickness, due to thermal smearing [8].
A very useful feature of working at finite T is that one needs fewer k-points in numerical
calculations of the MA constants than at T = 0; cf. [6, 8].

The anisotropy constant K1 given by the formulae (2)–(5) is a sum over k-points from the
whole 2D-BZ:

K1 = 1

N

∑
k

b̃1(k). (7)

The anisotropy constant K1, as well as �(2), can also be broken down into individual atomic
layer contributions K

(l)
1 (cf. [8, 9, 13]). It is shown in [8] that to calculate individual K

(l)
1 we

can still use the formulae (2)–(4) provided that J σ ′σ ′′
µ1µ2µ3µ4

is replaced with
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J σσ ′l
µ1µ2µ3µ4

= − 1

N

∑
k

∑
n1 n2 n3

S
[
εn1σ (k), εn2σ ′(k), εn3σ (k)

] ∑
µ

aσ
n1,lµ

(k)[aσ
n3,lµ

(k)]∗

×
∑
l′

ξl′a
σ ′
n2,l′µ2

(k)[aσ
n1,l′µ1

(k)]∗
∑
l′′

ξl′′a
σ
n3,l′′µ4

(k)[aσ ′
n2,l′′µ3

(k)]∗ (8)

where

S(ε1, ε2, ε3) = kBT

ε3 − ε2

[
L(ε3) − L(ε1)

ε3 − ε1
− L(ε2) − L(ε1)

ε2 − ε1

]
(9)

L(ε) = log (1 + exp[β(εF − ε)]) . (10)

It is obvious that the dipole–dipole interaction energy of the investigated Co/Pd film is
independent of the non-magnetic Pd overlayer thickness and as such is neglected. Therefore,
only the MA contribution to the total magnetic-anisotropy energy is considered in the present
paper.

3. Results and analysis

As reported earlier [12], the anisotropy constant K1 of Pd(p)/Co(16)/Pd(p) (001) fcc structures
calculated with the formulae (2)–(5) in the five-d-band TB model exhibits remarkable
oscillations, of a period of around 6 AL, when the Pd overlayer thickness p is varied; see
figure 1. Below we will reveal, step by step, the physical origin of the MA oscillations.

Figure 1. MA constant K1 against Pd overlayer thickness p for a (001) fcc Pd(p)/Co(16)/Pd(p)
slab (line 1) compared with fictitious K1 calculated with ξCo = 0 (line 2) or ξPd = 0 (line 3);
T = 300 K.

3.1. Analysis of MA oscillations in real space

The oscillations ofK1 versus the Pd thicknessp are surprising, especially in view of the fact that,
apart from the three Pd layers closest to the Co/Pd interface, which are only slightly magnetized,
the rest of the Pd overlayer is virtually non-magnetic (cf. [8]). For a paramagnetic free-standing
slab, K1 always vanishes since for zero net magnetization the slab energy cannot depend on
the magnetization direction. This is also true in our formalism where the quantities I σ ′σ ′′

µ1µ2µ3µ4

entering the expression (3) are the same for all spin pairs σ ′σ ′′ when the (paramagnetic)
electronic structure is identical for both spins. At this point, one could argue that it is a
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periodic change of the electronic structure of the ferromagnetic Co substrate, induced near
the Co/Pd interface by varying the thickness of the Pd overlayer, that leads, through the SO
coupling on Co atoms, to the oscillations of K1. However, a direct check shows that the
opposite is true. In figure 1, we show K1 calculated with either ξCo or ξPd set to zero. When
ξCo is set to zero the oscillatory part of K1 remains largely unchanged (though the mean value
of K1 is shifted) while with ξPd = 0 (and ξCo unchanged) the oscillations of K1 are almost
wiped out. These results prove clearly that the MA oscillations originate almost entirely within
the Pd overlayer. An important factor that facilitates this simple picture to emerge is the large
value of the ratio ξ 2

Pd/ξ
2
Co = 7.32 while K1 is a quadratic form of ξCo and ξPd; cf. equation (5).

The conclusion about the dominant role of the Pd overlayer in the actual
Pd(p)/Co(16)/Pd(p) slabs studied here is confirmed by examining layer contributions K

(l)
1

to the MA constant. Figure 2 shows these contributions for different Pd thicknesses
p = 5, 6, 7, 8, 9, 10 and 11. We find out that, for each p, the contribution K

(l)
1 oscillates

versus the atomic-layer position l in the Pd overlayer with roughly the same period of around 6
AL, strikingly similar to the period of the oscillations of the total K1 as a function of p. Also,
in the Pd overlayer each K

(l)
1 changes with increasing p in a similar, oscillatory, manner to the

whole K1, with minima at p = 5 and p = 11 and a maximum at p = 9. On the other hand,
the variations of K

(l)
1 versus p are much smaller in the Co layers.

Figure 2. Layer contributions K
(l)
1 to MA constant in a (001) fcc Pd(p)/Co(16)/Pd(p) slab for

p = 5, 6, 7, 8, 9, 10, 11. The different slabs presented are so aligned that the interface Pd layer is
at l = 11 for every slab. For each l there are up to seven subbars, each of which represents K

(l)
1 for

a different Pd thickness p so that in the composite bar for this l the rightmost subbar corresponds
to p = 11 and p decreases by 1 with each new subbar when moving across the bar to the left. This
assignment is marked explicitely for l = 1, 4, and 15. The contributions K

(l)
1 are shown in one

half of each slab only and are symmetrical in the other half.

3.2. Role of Fermi level

The structure of the expressions (5) for MA constants suggests that MA oscillations arise
from the changes of electronic structure around the Fermi energy εF as was already noted
in [4]. Damping of MA oscillations with increase of T (cf. [8]) also indicates they are due to
states at εF. This can be demonstrated directly in the present case by plotting the contribution
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KF
1 (!ε) to the total anisotropy constant K1 coming from states |n′σ ′k〉, |n′′σ ′′k〉 appearing in

the expression (5) which have energies εn′σ ′(k), εn′′σ ′′(k) lying within a [εF − !ε, εF + !ε]
interval. It is clearly seen in figure 3 that for !ε = 0.5 eV the contribution KF

1 exhibits
6-AL-period oscillations which follow closely the oscillations of the total K1. The remaining
MA contributions: KnF

1 and K1 −KF
1 −KnF

1 ≡ KFnF
1 , corresponding, respectively, to two and

one of the states |n′σ ′k〉, |n′′σ ′′k〉 lying outside the [εF − !ε, εF + !ε] interval, are more or
less constant for p � 5.

Figure 3. MA constant K1 against Pd overlayer thickness p for a (001) fcc Pd(p)/Co(16)/Pd(p)
slab (line 1) compared with KF

1 (line 2), KFnF
1 (line 3), and KnF

1 (line 4) calculated according to
formulae (2-5) but using only those states |n′σ ′k〉, |n′′σ ′′k〉 whose energies εn′σ ′ (k), εn′′σ ′′ (k) are
such that they both lie within the [εF − !ε, εF + !ε] interval or only one of them does or none
does, respectively; !ε = 0.5 meV, T = 300 K.

3.3. Breakdown of MA energy in k-space

The contributions b̃1(k) to the MA constant K1 come from the whole 2D-BZ (cf. figure 8
in [8]). To see whether the oscillations of K1 versus the Pd thickness p can be associated with
a certain region in the 2D-BZ we plot the oscillatory part of b̃1(k) defined as

b̃osc
1 (k) = b̃1(k) − b̃av

1 (k). (11)

Here, b̃av
1 (k) is the average of b̃1(k) with respect to p at a given k-point (or, equivalently,

b̃av
1 (k) = limp→∞ b̃1(k)). In these calculations, b̃av

1 (k) is approximated by

b̃av
1 (k) = 1

p2 − p1 + 1

p2∑
p=p1

b̃1(k) (12)

where p1 = 12, p2 = 23. Figure 4 shows the plots of b̃osc
1 (k) for p = 5, 7, 9, 11. As

can be seen, when the Pd overlayer thickness p is varied the most significant changes of the
b̃osc

1 (k) distribution take place in the region �� = {k : |ki | � 1
4π/a2d, i = x, y} around

k = 0, i.e., the � point. Indeed, for p = 5 and p = 11 (i.e., at the minima of K1; cf.
figure 1), b̃osc

1 (k) is large and negative in �� , while b̃osc
1 (k) is positive in �� for p = 7 and

p = 9. Some less significant variations of b̃osc
1 (k) versus p are also observed in the region

�M = {k : 3
4π/a2d � |ki | � π/a2d, i = x, y} while b̃osc

1 (k) ≈ 0 in the rest of the 2D-BZ
where b̃1(k) remains almost unchanged. However, when we compare the parts K1(��) and
K1(�M) of the total MA constant K1, coming from the regions �� and �M respectively, we
can conclude definitely that the 6-AL-period oscillations of K1 originate in the region �� .
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Figure 4. Oscillatory part b̃osc
1 (k) of the contributions b̃1(k) to MA constant K1 in 1/4 of the 2D-BZ

for a (001) fcc Pd(p)/Co(16)/Pd(p) slab with p = 5, p = 7, p = 9, and p = 11 at T = 300 K; cf.
equations (7), (11) and (12); a2d is the constant of the (001) fcc surface square lattice.

3.4. Effect of quantum-well states and resonances on MA: unique identification

As shown in [12], all spin-pair contributions Kσσ ′
1 to the MA constant K1 = ∑

σσ ′ K
σσ ′
1 (cf.

equations (2)–(5)) oscillate versus the Pd thickness p similarly to the total K1 though the
oscillations of K

↑↓
1 = K

↓↑
1 are of the opposite sign due to different signs in equation (3).

The oscillations of K
↑↑
1 and K

↑↓
1 = K

↓↑
1 involving up-spin electrons are more pronounced

than those of K
↓↓
1 due to down-spin electrons only. However, when the various spin-pair

contributions are summed they cancel to a large extent and the resultant sum K1 has much
smaller oscillations than any of the contributing terms. This implies that electrons of both
spins are important for the investigated MA oscillations.

The majority-spin energies are shown near the Fermi energy εF along the ky = 2kx line in
the �� region for p = 5, 7, 9 and 11 in figure 5. Near εF and above, the electron states come
in pairs. For each pair, the two component states are degenerate at the � point. Energies of
these pairs move upwards, towards the top of the majority-spin d band, when the Pd overlayer
thickness p increases. For p = 5 and p = 11 there exists a pair for which the energies ε+

m, ε−
m

(ε+
m � ε−

m ; where m is a pair index) of states forming it embrace the Fermi energy εF in most
of the �� region so that the pair gives a large contribution to K

↑↑
1 according to equation (5).

On the other hand, for p = 7 and p = 9 the pair energies ε+
m, ε−

m embrace εF only in this part
of �� where ε+

m − ε−
m is large so that the pair contribution is much smaller than for p = 5
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Figure 5. Majority-spin (up-spin) z-even energy bands in a (001) fcc Pd(p)/Co(16)/Pd(p) slab
near the � point along the ky = 2kx line for different Pd thicknesses: p = 5, p = 7, p = 9,
and p = 11. k|| is the distance

√
k2
x + k2

y from the � point. The energies at k = (0.05, 0.1)π/a2d
(corresponding to k|| = 0.112π/a2d) are marked with dots (•) and labelled with the quantum
number n which increases with the decreasing state energy εnσ (k) for σ =↑ so that n = 1 denotes
the highest-energy state. The horizontal dashed line represents the Fermi energy εF = 0. The
majority-spin energies are identical (extremely close to each other) for z-even and z-odd states in
the energy regime shown.

or 11. This mechanism is illustrated in figure 6 where the contributions b̃
↑↑
n′n′′(k) to

K
↑↑
1 = 1

N

∑
k

∑
n′n′′

b̃
↑↑
n′n′′(k) (13)

(cf. equations (2)–(5)) from all 25 doublets formed from five highest up-spin d-band quantum
states |n′k ↑〉, |n′′k ↑〉 at k = (0.05, 0.1)π/a2d are plotted for p = 5, 7, 9 and 11. The
contributions b̃

↑↑
n′n′′(k) shown in figure 6 are large only when the states |n′k ↑〉 and |n′′k ↑〉

form a pair of the kind described above, and the condition εn′↑(k) < εF < εn′′↑(k) (or
εn′′↑(k) < εF < εn′↑(k)) is satisfied. This takes place for p = 5 and p = 11. So, every
time the energy of such a pair crosses the Fermi energy at the � point when the Pd thickness
p increases, a downturn in K

↑↑
1 occurs. This happens for p = 5, 11, 17, 22 and so on, i.e.

repeats with a period close to 6 AL.
The majority-spin, up-spin, states forming the pairs are almost perfectly confined in the

Pd overlayer since the Fermi energy εF lies above the top of the Co d band for majority spin.
These are QW states. The existence of d-like QW states near the Fermi level on Pd overlayers
on the Co substrate was confirmed in experiment [25]. We find that the amplitudes a

↑
n,lµ of

these states oscillate versus l with a period close to two. However, the corresponding electron
probabilities |a↑

n,lµ|2 have much longer periods which depend on the state energy. For the states
close to the Fermi energy, the period is around 6 AL (cf. figure 7).

For minority spin, the electronic structure near the Fermi energy is more complex than
for majority spin. Many of the minority-spin states form the characteristic pairs of states



910 M Cinal

�

��

��

��

�
�

�
� �

�
�
�
�

��

��
�

FR
Q
WU
LE
X
WLR
QV
�W
R
��
.
��

�

 
�P
H
9
� �����

�

�

��

��

��

� �
�

� �

�
�
�
�

��

��
�

FR
Q
WU
LE
XW
LR
Q
V�
WR
��
.
��

�

 
�P
H
9
� �����

�

�

��

��

��

�
�

�
� �

�
�
�
�

��

��
�

FR
Q
WU
LE
X
WLR
QV
�W
R
��
.
��

�

 
�P
H
9
� ���	�

�
�

��

��

��

�
�

�
� �

�
�
�
�

��

��
�

FR
QW
UL
EX
WLR
Q
V�
WR
��
.
��

�

 
�P
H
9
� ���

�

�

Figure 6. Contributions −b̃
↑↑
n′n′′ (k) to −K

↑↑
1 from individual pairs of z-even quantum states |n′k ↑〉,

|n′′k ↑〉 at k = (0.05, 0.1)π/a2d in a (001) fcc Pd(p)/Co(16)/Pd(p) slab for p = 5, p = 7, p = 9,
and p = 11; cf. equation (13); T = 300 K. The quantum number n (i.e., n′ or n′′) increases
according to the decreasing state energy so that n = 1 corresponds the highest-energy z-even
majority-spin state at the chosen k. The energies of the quantum states involved here are marked
with dots (•) in figure 5. For the sake of clarity, the contributions −b̃

↑↑
n′n′′ (k), instead of b̃

↑↑
n′n′′ (k),

with n′ � n′′ only, are shown. For n′ � n′′, −b̃
↑↑
n′n′′ (k) = −b̃

↑↑
n′′n′ (k) according to equations (2)–(5)

and (13). Contributions b̃
↑↑
n′n′′ (k) from pairs of z-odd states |n′k ↑〉, |n′′k ↑〉 are (almost) identical

with the corresponding contributions from z-even states in the (n′, n′′) range shown while b̃
↑↑
n′n′′ (k)

are significantly smaller when the states |n′k ↑〉 are of different symmetry than |n′′k ↑〉 under the
z → −z transformation.

Figure 7. Layer electron probability
∑5

µ=1 |a↑
n,lµ(k)|2 for the majority-spin (squares) z-even

quantum-well state |nk ↑〉, k = (0.05, 0.1)π/a2d, n = 3, with εn↑(k) − εF = 0.0427 eV (cf.
figure 5 for k|| = 0.112π/a2d) and for the minority-spin (circles) z-even resonance |n′k ↓〉,
k = (0.05, 0.1)π/a2d, n′ = 17, with εn′↓(k)− εF = 0.0254 eV (cf. figure 8 for k|| = 0.112π/a2d)
in a (001) fcc Pd(11)/Co(16)/Pd(11) slab (i.e., for p = 11). The results are shown in one half of
the slab only and are symmetrical in the other half.
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degenerate at the � point and similar to the pairs of majority-spin QW states; see figure 8. At
first sight, we do not observe a clear correlation between the energy position of these minority-
spin state pairs and the oscillations of K↓↓

1 with increasing p. However, when we plot, near the
� point, the energies of those states that are localized mostly in the Pd overlayer we find that
for p = 5 and p = 11 there exists a pair of such states with energies close to εF, while there
is no such pair for p = 8; see figure 8. This implies that the amplitudes of states belonging to
a pair that is close to the Fermi energy εF are large in the Pd(p) overlayer only for the same
Pd thicknesses p for which the majority-spin QW states cross εF. These minority-spin states
are pairs of resonances which largely resemble majority-spin QW states but differ from the
latter in that they do not vanish completely in the Co layer; cf. figure 7. Thus, the pairs of the
resonances appear periodically in the vicinity of the Fermi energy when the Pd thickness p

increases, and they are responsible for the oscillations of K
↓↓
1 .
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Figure 8. Energies of minority-spin (down-spin) electron states along the ky = 2kx line near
the � point in a (001) fcc Pd(p)/Co(16)/Pd(p) slab for different Pd thicknesses: p = 5,
p = 8, and p = 11 (left column) and the corresponding selected energies of those z-
even (◦) and z-odd (•) minority-spin states |nk ↓〉 whose average layer probability |aPd

av |2 =
(1/p)

∑p

l=1

∑5
µ=1 |a↓

n,lµ|2 in the Pd overlayer is at least twice larger than the average layer

probability |aCo
av |2 = (1/16)

∑p+16
l=p+1

∑5
µ=1 |a↓

n,lµ|2 in the Co substrate (right column). The
horizontal dashed line represents the Fermi energy εF = 0.
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3.5. Semianalytical model for quantum-well states and resonances

The majority-spin QW states and minority-spin resonances in question are mainly built of the
yz and zx orbitals. This allows us to describe these states within a simplified TB model using
µ = yz and µ = zx as the only basis orbitals.

For majority spin the amplitude a l = (alys, alzx) of the QW states vanishes in the cobalt
part of the slab and the simplified TB equations in a Pd(p) overlayer take the form

V̂Pda 1 + T̂Pda 2 = ε a 1 (14a)

T̂ +
Pda l−1 + V̂Pda l + T̂Pda l+1 = ε a l (l = 2, . . . , p − 1) (14b)

T̂ +
Pdap−1 + V̂Pdap = ε ap (14c)

as for a free standing Pd slab. Here, V̂Pd = (V Pd
µν ) = (Hσ

lµ,lν(k)), T̂Pd = (T Pd
µν ) = (Hσ

lµ,l+1ν(k))

where µ, ν = yz, zx and l, l +1 are any two neighbouring Pd atomic layers. We take σ =↑ but
the matrices V̂Pd, T̂Pd are the same for the opposite spin σ =↓ in the paramagnetic Pd overlayer.
The on-site potential matrix V̂Pd is assumed here to be layer-independent and hopping to farther
than first-nearest-neighbours is neglected. For a (001) fcc slab, T̂Pd is real and T̂ +

Pd = T̂Pd.
For an infinite fcc Pd crystal, equation (14b) holds for any l and its real solutions

alµ = bµ sin ζ l (15)

are obtained by a linear combination of the Bloch functions bµe
−iζ l and bµe

iζ l . Here,
ζ = kza/2 is proportional to the z-component (i.e., perpendicular to the layers) of a three-
dimensional wave-vector (k, kz). The amplitude b = (byz, bzx) of these bulk states fulfills the
equation [

V̂Pd + 2(cos ζ )T̂Pd

]
b = ε b (16)

obtained from equation (14b). The two analytical solutions b = b+, b− of equation (16) and
the corresponding energies ε = ε+

b , ε−
b are given explicitly in [12]. They depend both on ζ

and k. For k ∈ �� and ζ � π , the solutions b±(k, ζ ) properly approximate true eigenstates
in bulk Pd and seize to depend on ζ in the first approximation.

It is immediately seen that the bulk solution (15) is also valid for a finite slab described
by equations (14) if ζ is chosen such that sin ζ l = 0 for l = p + 1. Indeed, in such a case,
we have ap+1 = a 0 = 0 so that equations (14a), (14c) are fulfilled once equation (14b) holds
for any l. This leads to the quantization condition for the majority-spin QW states in the Pd
overlayer:

ζ = ζm = π − mπ

p + 1
,m = 1, 2, . . . (17)

here m must be small (m � p) if ζ � π . Thus, the analytical forms of majority-spin QW-
states and their energies ε±(k) = ε±

b (k, ζF), previously found in [12] in an approximate way,
are now obtained in a strict manner, i.e., directly from the TB slab model.

The mth QW-state-pair energies ε+
m, ε−

m move upwards when the Pd thickness p grows
and they cross the Fermi level εF at k = 0 when

p + 1 ≈ mπ

π − ζF
= mL (18)

where ζF is such that ε±
b (0, ζF) = εF. So, when p increases, the Fermi level εF is crossed by a

QW state pair at regular intervals, i.e., periodically. The corresponding period L = 5.67 AL
is determined by the magnitude of π − ζF which is proportional to the extremal dimension
of the Pd bulk Fermi surface in the z-direction [12]. This precise value of L, replacing the
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approximate period of 6 AL deduced earlier from figure 1, is in perfect agreement with the
period of 5.7 AL found in the ab initio calculations in [26]. Thus, we obtain from equation (18)
the sequence of Pd thicknesses p = 4.7, 10.3, 16.0, 21.7, . . . coinciding almost exactly with
the positions of the K1 minima found in the full, five-d-band, TB calculations; cf. figure 1.

The simplified TB model (14) can be further enhanced to describe the minority-spin
resonances. These states are assumed to have only yz- and zx-orbital components in the Pd
overlayer and to spill out into the Co layer where, in principle, they can be composed of all
five d-orbitals. Thus, for a Pd(p)/Co(q) slab the following TB equations

T̂ +
Pdap−1 + V̂Pdap + T̂PdCoãp+1 = ε ap (19a)

T̂ +
PdCoap + V̂Coãp+1 + T̂Coãp+2 = ε ãp+1 (19b)

T̂ +
Coã l−1 + V̂Coã l + T̂Coã l+1 = ε ã l (l = p + 2, . . . , p + q − 1) (19c)

T̂ +
Coãp+q−1 + V̂Coãp+q = ε ãp+q (19d)

hold in addition to equations (14a) and (14b). The amplitude ã l = (ãlµ) and the matrices
V̂Co = (V Co

µν ) = (H
↓
lµ,lν(k)), T̂Co = (T Co

µν ) = (H
↓
lµ,l+1ν(k)), with p + 1 � l � p + q, µ,

ν = xy, yz, zx, x2 − y2, 3z2 − r2, describe the Co part of the system. The interaction
between the Pd and Co layers at the Co/Pd interface is included through the hopping matrix
T̂PdCo = (T PdCo

µν ) = (H
↓
pµ,p+1ν(k)) (with µ = yz, zx and ν = xy, yz, zx, x2 − y2, 3z2 − r2).

As in equations (14), the hopping between first-nearest-neighbours is included only and the
on-site potential matrices V̂Pd and V̂Co are assumed not to depend on the atomic layer index l

within the Pd and Co parts of the system, respectively. If we now assume, in a similar way
to majority-spin electrons, that the eigenstates of minority-spin electrons are given in the Pd
layer by the solution (15) with the energy ε = ε(ζ ) = ε+

b (k, ζ ) [or ε−
b (k, ζ )] then the TB

equations (19a) and (19b) lead to the following relations:

sin[(p + 1)ζ ]T̂Pdb − T̂PdCoãp+1 = 0 (20a)

sin(ζp)T̂ +
PdCob + [V̂Co − εb(ζ )]ãp+1 + T̂Coãp+2 = 0. (20b)

These two equations together with equations (19c) and (19d) form a set of 2 + 5q linear
equations for 2 + 5q unknowns. Thus, non-zero solutions are subject to the requirement that
the determinant of the (2 + 5q)× (2 + 5q) matrix corresponding to this set vanishes. This leads
to an non-linear equation for ζ of the following general form:

F(ζ ) = sin2[(p + 1)ζ ]f1[εb(ζ )] + sin[(p + 1)ζ ] sin(pζ )f2[εb(ζ )] + sin2(pζ )f3[εb(ζ )] = 0.

(21)

It is immediately seen that the values ζ = ζm, obtained from the quantization condition (17)
for majority-spin electrons, are very close to some of the exact solutions ζ of equation (21)
valid for minority-spin electrons. Indeed,

F(ζ = ζm) = sin2

[
mπ

p + 1

]
f3[εb(ζ )] (22)

is very small when m � p. Moreover, one can also argue that for a solution ζ ≈ ζm with
m � p, when both sin(pζ ) ≈ 0 and sin[(p + 1)ζ ] ≈ 0, equations (20) imply that the
amplitudes ãp+1, ãp+2, and, via equations (19c) and (19d), also all the remaining ã l , should
be significantly smaller than b, and, in consequence, smaller than the amplitudes a l in Pd
layers. Thus, the minority-spin eigenstates with ζ ≈ ζm and energies ε = ε±

b (k, ζ ) ≈ ε±
m(k)

are resonances, mostly confined in the Pd overlayer.
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This explains why the minority-spin resonances appear at the Fermi level εF for the nearly
same thicknesses of the Pd overlayer as the majority-spin QW states, i.e., periodically: with
the same period L = 5.67 AL and in phase with the majority-spin QW states; cf. figure 8.
According to the above analysis (cf. equation (22) in particular), such a situation takes place
because the condition ζ = ζm � π , or equivalently m � p, is satisfied for electrons with
k ≈ 0 and energies ε±

b (k, ζ ) close to εF. This could only happen because the Fermi energy εF

lies near the top of the d-band in bulk palladium.

3.6. Concluding remarks

The findings of the previous section explain why all spin-pair contributions Kσσ ′
1 oscillate with

the same period L and in phase, and so does their sum, i.e., K1. The oscillation amplitude
of K

↓↓
1 is smaller than that of K

↑↑
1 because the amplitude a

↓
n,lµ of a minority-spin resonance,

contributing to the MA oscillations, is smaller in the Pd overlayer than the amplitude of a
↑
n′,lµ

of the corresponding majority-spin QW state (cf. figure 7) while these amplitudes enter in
the fourth power into the expression for the MA constant (see equation (5)). Obviously, the
oscillation amplitude of −K

↑↓
1 = −K

↓↑
1 should be between that of K

↓↓
1 and that of K

↑↑
1 , just

as found in figure 2 in [12].
The fact that the oscillation amplitudes of different contributions Kσσ ′

1 are not equal makes
it possible that the sum of Kσσ ′

1 , i.e., the total anisotropy constant K1 oscillates with a non-zero
amplitude. Indeed, for a free-standing Pd film, the contributions Kσσ ′

1 are also non-zero and
oscillate as a function of the Pd film thickness with the same period as in the Co/Pd system
investigated here, but the oscillations amplitudes of K↑↑

1 and K
↓↓
1 are identical in this case and

equal to the amplitudes of −K
↑↓
1 = −K

↓↑
1 . Thus, when the contributions Kσσ ′

1 are summed
the resulting K1 vanishes exactly and no MA oscillations are present. The different behaviour
of the MA constant K1 in the two systems compared here is ultimately due to the fact that
electrons moving in a free-standing paramagnetic Pd film are subject to the same boundary
conditions for both spins, while in a Pd overlayer put upon Co substrate the boundary conditions
on the Co/Pd interface depend on the spin, especially for electrons with energies close to the
Fermi level. Indeed, in this energy regime, only the minority-spin electrons can penetrate the
Co substrate, while the electrons with the opposite, majority, spin are completely confined in
the Pd overlayer. In this situation, the bulk-like states in the paramagnetic overlayer, which has
no, or very small, magnetic moment of its own, can influence the MA energy which describes
the dependence of the Co/Pd system energy on the direction of the system’s magnetic moment
originating in the ferromagnetic Co substrate layer. A similar argument [19, 20] based on the
dependence of boundary conditions on electronic spin was used to explain the oscillations of
the exchange coupling between two ferromagnetic layers separated by a paramagnetic layer
of varying thickness.

The amplitudes aσ
n,lµ of majority-spin QW states and minority-spin resonances oscillate

in the Pd overlayer according to the formula (15). When the energies ε±
m = ε±

b (ζm) of these
states cross the Fermi level εF, so that ζm = ζm(σ,n) is close to ζF, the period of the amplitude
oscillations

La ≈ 2π

ζF
= 2

1 − 1/L
(23)

is close to 2 AL, as ζF � π or 1/L � 1. On the other hand, the electron probabilities
|an,lµ|2 ∼ sin2 ζml = 1

2 [1−cos 2(π −ζm)l] oscillate in the Pd overlayer with the long period of
around π/(π −ζF) = L = 5.67 AL (cf. equation (18)) just as was found within the full, five-d-
band, TB model; cf. figure 7. Similarly, the layer contributions K

(l)
1 depending on l through the
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quadratic terms aσ
n1,lµ

[aσ
n3,lµ

]∗ ∼ (sin ζm(σ,n1)l)(sin ζm(σ,n3)l) (present in equation (8)) oscillate
with a period close to L = 5.67 AL in the Pd part of the investigated systems. This explains
why the same period of around 6 AL is found for both the oscillations of the total MA constant
K1 versus the Pd overlayer thickness p (figure 1) and the oscillations of the layer contributions
K

(l)
1 versus layer index l in the Pd overlayer (figure 2).

According to Szunyogh and Györffy [27], the amplitude A(p) of the MA oscillations
behaves asymptotically as p−2 at the zero temperature T . However, the MA oscillations
reported here decay faster than p−2, presumably due to the use of finite temperature T . In the
analogy with the exchange coupling theory [20], it is expected that A(p) ∼ [p sinh(ckBTp)]−1

holds in the first approximation. A numerical fit for the present MA results seems to confirm
this suggestion and the value of around c = 4.5 eV−1 is found.

As shown in the present paper, the investigated MA oscillations in Co/Pd films come from
QW states and corresponding resonances which originate in the vicinity of the X point in the
3D BZ of bulk Pd and cross the Fermi level εF as the Pd overlayer thickness increases. These
QW states and resonances should not change significantly upon adding s and p orbitals in the
TB model since, as the ab initio calculations [28] confirm, the bulk Pd states at and around
the X point are built almost entirely from d-orbitals. Also, since the present d-only TB model
assumes the correct number (0.36 as given in [28]) of holes in the Fermi-surface hole pocket
around X, the position of the Fermi level εF with respect to the top of the Pd d band should
remain almost unchanged if εF was determined self-consistently in an more accurate TB model
based on nine, s, p, d, orbitals. As this relative position of the Fermi level determines the MA
oscillation period through equation (18), the MA energy should also oscillate with the same
period of around 5.7 AL when s and p orbitals are included. These suppositions are supported
by the results of the on-going work which aims to establish the effect of sp-d hybridization on
MA in ultrathin magnetic films [29].

The QW states present in the Pd overlayer are responsible not only for the MA oscillations
as shown in this paper, but also lead to the onset of magnetic moments in Pd layers which
occur periodically when the Pd thickness grows. This effect, found theoretically for (001) fcc
Ag/Pd systems in [26, 30], cannot be reproduced in the present d-only model where the layer
magnetic moments have given, fixed, values and are not calculated self-consistently. However,
the existence of small Pd moments, also present in the applied TB model (cf. [8]), is not an
important factor in the MA oscillation problem because such moments do not alter significantly
the Co/Pd-interface boundary conditions whose dependence on spin has been shown here to
be the basic mechanism that allows the QW states to induce the non-zero MA oscillations.
This conclusion is supported by the results of [12] where the majority-spin contribution to the
MA oscillation was found to be well reproduced within the simplified two-band TB model
assuming that the Pd overlayer is strictly paramagnetic.

4. Summary

The starting point of the present work was the numerical result of the MA oscillations versus
the thickness of the paramagnetic Pd overlayer in Co/Pd slabs. The objective was to explain the
internal mechanisms behind this unexpected theoretical finding. This goal has been achieved,
with careful and detailed analysis, by tracing the origin of the MA oscillations down to
individual electronic quantum states. The states responsible for the effect have turned out to be
pairs of majority-spin quantum-well states and corresponding pairs of minority-spin resonances
confined in the Pd overlayer (or partly confined in the case of resonances). These states appear
near the Fermi level in the centre of the two-dimensional Brillouin zone. The results of the
presented analysis give formal grounds for the simple approach used earlier [12] to explain the
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period of the MA oscillations and to examine, in an approximate manner, the majority-spin
contribution to these oscillations. The way that minority-spin electrons contribute to the MA
oscillations is now also well understood. The present work provides a broad view on the
investigated problem and gives a clear and solid proof of how the MA oscillations arise.

The techniques of analysis applied in the MA problem can also be used in the study
of other physical quantities related to the electronic structure in systems of interest. This
conclusion is particularly relevant to quantities expressed as a second-order correction in
perturbed systems displaying two-dimensional translational symmetry. It should also be
stressed that the presented methods of analysis, like the Pd-thickness-dependent k-space MA
breakdown, are not restricted to tight-binding models so that they can be used as well within
ab initio approaches to electronic structure.
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